浏览全部资源
扫码关注微信
1.广州中医药大学第一临床医学院 广州 510006
2.广州中医药大学第一附属医院
张钰莹,女,在读博士生
#李赛美,女,博士,教授,主任医师,博士生导师,主要研究方向:中医药防治内分泌疾病,E-mail:lisaimei2004@163.com
纸质出版日期:2025-01-30,
网络出版日期:2024-12-10,
收稿日期:2024-07-16,
移动端阅览
张钰莹, 黄薇宇, 袁颢瑜, 等. 基于“少火生气,壮火食气”理论探析2型糖尿病进程中胰岛巨噬细胞对β细胞功能变化的影响[J]. 北京中医药大学学报, 2025,48(1):14-20.
ZHANG YUYING, HUANG WEIYU, YUAN HAOYU, et al. Effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus progression based on the "moderate fire generating qi, hyperactive fire consuming qi" theory. [J]. Journal of beijing university of traditional chinese medicine, 2025, 48(1): 14-20.
张钰莹, 黄薇宇, 袁颢瑜, 等. 基于“少火生气,壮火食气”理论探析2型糖尿病进程中胰岛巨噬细胞对β细胞功能变化的影响[J]. 北京中医药大学学报, 2025,48(1):14-20. DOI: 10.3969/j.issn.1006-2157.2025.01.003.
ZHANG YUYING, HUANG WEIYU, YUAN HAOYU, et al. Effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus progression based on the "moderate fire generating qi, hyperactive fire consuming qi" theory. [J]. Journal of beijing university of traditional chinese medicine, 2025, 48(1): 14-20. DOI: 10.3969/j.issn.1006-2157.2025.01.003.
本文基于“少火生气,壮火食气”理论探讨2型糖尿病(T2DM)进程中胰岛巨噬细胞对β细胞功能变化的影响。T2DM与慢性低度炎症密切相关,胰岛巨噬细胞在这一过程中发挥关键作用。生理状态下,胰岛巨噬细胞通过分泌抗炎因子和生长因子,适度调节免疫反应,促进细胞增殖,维持胰岛β细胞的存活和功能,发挥类似于“少火生气”的作用。在T2DM的病理过程中,胰岛巨噬细胞过度活化,功能失调,分泌大量促炎因子,引发严重的炎症反应和氧化应激,直接损伤胰岛β细胞,并破坏胰岛微环境和血供,加剧局部炎症和结构损伤,恶化β细胞的生存环境,最终导致胰岛β细胞的数量减少和功能丧失,与“壮火食气”理论中亢盛之火导致机体气血耗伤的过程相吻合。本文探讨中医学理论在西医学中的理解与应用,并为T2DM的防治提供了新的视角,调控胰岛巨噬细胞功能、减弱其促炎反应,可能成为保护β细胞功能、延缓T2DM进程的关键策略。
This study examined the effect of islet macrophages on β-cell function changes during type 2 diabetes mellitus (T2DM) progression based on the traditional Chinese medicine theory that " moderate fire generating qi
hyperactive fire consuming qi" . T2DM is closely associated with chronic low-grade inflammation
with islet macrophages playing a central role in this process. Under physiological conditions
islet macrophages secrete anti-inflammatory and growth factors to regulate the immune response
promote cell proliferation
and support islet β-cell survival and function
reflecting the concept of " moderate fire generating qi" . However
during the pathological process of T2DM
islet macrophages become over-activated and dysfunctional
secreting large amounts of pro-inflammatory factors that trigger severe inflammatory responses and oxidative stress. This process damages islet β-cells
disrupts the islet microenvironment and blood supply
exacerbates local inflammation and structural damage
and worsens the survival environment of β-cells. Ultimately
this leads to fewer β-cells and function loss
aligning with the " hyperactive fire consuming qi" theory
where excessive fire depletes qi and blood. This study enhances the understanding and application of traditional Chinese medicine theories in modern medicine
offering a new perspective on T2DM prevention and treatment. Regulating islet macrophage function and reducing their pro-inflammatory responses may become key strategies for preserving β-cell function and slowing T2DM progression.
2型糖尿病胰岛巨噬细胞胰岛β细胞少火生气壮火食气
type 2 diabetes mellitusislet macrophagesislet β-cellsmoderate fire generating qihyperactive fire consuming qi
AMERICAN DIABETES ASSOCIATION. Diagnosis and classification of diabetes mellitus[J]. Diabetes Care, 2014, 37(Suppl 1): S81-S90.
HOTAMISLIGIL GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121): 860-867.
黄帝内经·素问[M].田代华,校注. 北京:人民卫生出版社,2016:25-28.
于晓艳. “壮火之气衰,少火之气壮”浅议[J]. 云南中医学院学报,2014, 37(4): 17-19.
马莳.黄帝内经素问注证发微[M]. 北京:人民卫生出版社,2012:153-154.
王冰.黄帝内经素问[M]. 鲁兆麟,主校. 沈阳:辽宁科学技术出版社,1997:35-37.
张景岳.类经[M].北京:人民卫生出版社,1963:54.
张景岳.景岳全书[M].北京:人民卫生出版社,1965:1024.
张锡纯.质疑录[M].北京:人民卫生出版社,1959:147.
张志聪.黄帝内经注[M].北京:人民卫生出版社,1982:183.
SHOELSON SE, LEE J, GOLDFINE AB. Inflammation and insulin resistance[J]. J Clin Invest, 2006, 116(7): 1793-1801.
EHSES JA, PERREN A, EPPLER E, et al. Increased number of islet-associated macrophages in type 2 diabetes[J]. Diabetes, 2007, 56(9): 2356-2370.
FU Z, GILBERT ER, LIU DM. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes[J]. Curr Diabetes Rev, 2013, 9(1): 25-53.
GALICIA-GARCIA U, BENITO-VICENTE A, JEBARI S, et al. Pathophysiology of type 2 diabetes mellitus[J]. Int J Mol Sci, 2020, 21(17): 6275.
CHIOU J, ZENG C, CHENG Z, et al. Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk[J]. Nat Genet, 2021, 53(4): 455-466.
OGIHARA T, MIRMIRA RG. An islet in distress: β cell failure in type 2 diabetes[J]. J Diabetes Investig, 2010, 1(4): 123-133.
WYNN TA, CHAWLA A, POLLARD JW. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455.
ZHOU DX, HUANG C, LIN Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways[J]. Cell Signal, 2014, 26(2): 192-197.
EGUCHI K, MANABE I. Macrophages and islet inflammation in type 2 diabetes[J]. Diabetes Obes Metab, 2013, 15(Suppl 3): 152-158.
CUENCO J, DALMAS E. Islet inflammation and β cell dysfunction in type 2 diabetes[J]. Handb Exp Pharmacol, 2022, 274: 227-251.
GUO JL, FU WX. Immune regulation of islet homeostasis and adaptation[J]. J Mol Cell Biol, 2020, 12(10): 764-774.
KULKARNI RN. The islet beta-cell[J]. Int J Biochem Cell Biol, 2004, 36(3):365-371.
CUI F, HE X. IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway[J]. Inflamm Res, 2022, 71(5/6): 669-680.
SHIRAKAWA J, TAJIMA K, OKUYAMA T, et al. Luseogliflozin increases beta cell proliferation through humoral factors that activate an insulin receptor- and IGF-1 receptor-independent pathway[J]. Diabetologia, 2020, 63(3): 577-587.
MIETTINEN PJ, HUOTARI M, KOIVISTO T, et al. Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors[J]. Development, 2000, 127(12): 2617-2627.
ZHANG LJ, CHEN YY, LI C, et al. Protective effects of combined intervention with adenovirus vector mediated IL-10 and IGF-1 genes on endogenous islet β cells in nonobese diabetes mice with onset of type 1 diabetes mellitus[J]. PLoS One, 2014, 9(3): e92616.
GEZGINCI-OKTAYOGLU S, KARATUG A, BOLKENT S. The relation among NGF, EGF and insulin is important for triggering pancreatic β cell apoptosis[J]. Diabetes Metab Res Rev, 2012, 28(8): 654-662.
GERACE D, ZHOU Q, KENTY JH, et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance[J]. Cell Rep Med, 2023, 4(1): 100879.
OUYANG W, RUTZ S, CRELLIN NK, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease[J]. Annu Rev Immunol, 2011, 29: 71-109.
LARSON C, ORONSKY B, CARTER CA, et al. TGF-beta: a master immune regulator[J]. Expert Opin Ther Targets, 2020, 24(5): 427-438.
COSENTINO C, REGAZZI R. Crosstalk between macrophages and pancreatic β-cells in islet development, homeostasis and disease[J]. Int J Mol Sci, 2021, 22(4): 1765.
INOKUCHI C, UEDA H, HAMAGUCHI T, et al. Role of macrophages in the development of pancreatic islet injury in spontaneously diabetic torii rats[J]. Exp Anim, 2009, 58(4): 383-394.
LUI KO. VEGF-A: the inductive angiogenic factor for development, regeneration and function of pancreatic beta cells[J]. Curr Stem Cell Res Ther, 2014, 9(5):396-400.
BURKE SJ, STADLER K, LU D, et al. IL-1β reciprocally regulates chemokine and insulin secretion in pancreatic β-cells via NF-κB[J]. Am J Physiol Endocrinol Metab, 2015, 309(8): E715-E726.
YANG J, PARK Y, ZHANG HR, et al. Feed-forward signaling of TNF-alpha and NF-kappaB via IKK-beta pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice[J]. Am J Physiol Heart Circ Physiol, 2009, 296(6): H1850-H1858.
LI YR, CHEN XQ, CHEN YL, et al. Berberine improves TNF-α-induced hepatic insulin resistance by targeting MEKK1/MEK pathway[J]. Inflammation, 2022, 45(5): 2016-2026.
O′CONNELL D, BOUAZZA B, KOKALARI B, et al. IFN-γ-induced JAK/STAT, but not NF-κB, signaling pathway is insensitive to glucocorticoid in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(4): L348-L359.
CAO ZH, ZHENG QY, LI GQ, et al. STAT1-mediated down-regulation of Bcl-2 expression is involved in IFN-γ/TNF-α-induced apoptosis in NIT-1 cells[J]. PLoS One, 2015, 10(3): e0120921.
REDDY S, BAI Y, ROBINSON E, et al. Immunolocalization of monocyte chemoattractant protein-1 in islets of NOD mice during cyclophosphamide administration[J]. Ann N Y Acad Sci, 2006, 1079: 103-108.
JEŽEK P, JABUREK M, PLECITÁ-HLAVATÁ L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes[J]. Antioxid Redox Signal, 2019, 31(10): 722-751.
LI D, JIANG CJ, MEI GB, et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes[J]. Nutrients, 2020, 12(10): 2954.
SHAO Z, SCHUSTER A, BOROWSKI AG, et al. Soluble angiotensin converting enzyme 2 levels in chronic heart failure is associated with decreased exercise capacity and increased oxidative stress-mediated endothelial dysfunction[J]. Transl Res, 2019, 212: 80-88.
CAHILL-SMITH S, LI JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2[J]. Br J Clin Pharmacol, 2014, 78(3): 441-453.
LIU C, FU YT, LI CE, et al. Phycocyanin-functionalized selenium nanoparticles reverse palmitic acid-induced pancreatic β cell apoptosis by enhancing cellular uptake and blocking reactive oxygen species (ROS)-mediated mitochondria dysfunction[J]. J Agric Food Chem, 2017, 65(22): 4405-4413.
PINTI MV, FINK GK, HATHAWAY QA, et al. Mitochondrial dysfunction in type 2 diabetes mellitus: an organ-based analysis[J]. Am J Physiol Endocrinol Metab, 2019, 316(2): E268-E285.
NOKKAEW N, MONGKOLPATHUMRAT P, JUNSIRI R, et al. p38 MAPK inhibitor (SB203580) and metformin reduces aortic protein carbonyl and inflammation in non-obese type 2 diabetic rats[J]. Indian J Clin Biochem, 2021, 36(2): 228-234.
YANG CY, LIU SH, SU CC, et al. Methylmercury induces mitochondria- and endoplasmic reticulum stress-dependent pancreatic β-cell apoptosis via an oxidative stress-mediated JNK signaling pathway[J]. Int J Mol Sci, 2022, 23(5): 2858.
EL AZZOUZI K, WIESNER C, LINDER S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence[J]. J Cell Biol, 2016, 213(1): 109-125.
CARVALHO VHC, WANG QQ, XU XH, et al. Long-term exercise preserves pancreatic islet structure and β-cell mass through attenuation of islet inflammation and fibrosis[J]. FASEB J, 2023, 37(3): e22822.
LINGWAL N, PADMASEKAR M, SAMIKANNU B, et al. Inhibition of gelatinase B (matrix metalloprotease-9) activity reduces cellular inflammation and restores function of transplanted pancreatic islets[J]. Diabetes, 2012, 61(8): 2045-2053.
CHAN JY, LEE K, MAXWELL EL, et al. Macrophage alterations in islets of obese mice linked to beta cell disruption in diabetes[J]. Diabetologia, 2019, 62(6): 993-999.
STAELS W, HEREMANS Y, HEIMBERG H, et al. VEGF-A and blood vessels: a beta cell perspective[J]. Diabetologia, 2019, 62(11): 1961-1968.
WATADA H. Role of VEGF-A in pancreatic beta cells[J]. Endocr J, 2010, 57(3): 185-191.
JABS N, FRANKLIN I, BRENNER MB, et al. Reduced insulin secretion and content in VEGF-A deficient mouse pancreatic islets[J]. Exp Clin Endocrinol Diabetes, 2008, 116(Suppl 1): S46-S49.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构