浏览全部资源
扫码关注微信
天津中医药大学第一附属医院,国家中医针灸临床医学研究中心 天津 300381
赵子琪,女,在读博士生
#王斌,男,博士,主任医师,博士生导师,主要研究方向:中西医结合治疗内分泌代谢病,E-mail:robin_e@sina.com
纸质出版日期:2025-01-30,
网络出版日期:2024-12-27,
收稿日期:2024-10-10,
移动端阅览
赵子琪, 庞湃, 任越, 等. 2型糖尿病浊毒内蕴证患者血浆代谢组学特征分析[J]. 北京中医药大学学报, 2025,48(1):34-42.
ZHAO ZIQI, PANG PAI, REN YUE, et al. Analysis of plasma metabonomic characteristics of type 2 diabetes mellitus patients with turbid toxin accumulation syndrome. [J]. Journal of beijing university of traditional chinese medicine, 2025, 48(1): 34-42.
赵子琪, 庞湃, 任越, 等. 2型糖尿病浊毒内蕴证患者血浆代谢组学特征分析[J]. 北京中医药大学学报, 2025,48(1):34-42. DOI: 10.3969/j.issn.1006-2157.2025.01.005.
ZHAO ZIQI, PANG PAI, REN YUE, et al. Analysis of plasma metabonomic characteristics of type 2 diabetes mellitus patients with turbid toxin accumulation syndrome. [J]. Journal of beijing university of traditional chinese medicine, 2025, 48(1): 34-42. DOI: 10.3969/j.issn.1006-2157.2025.01.005.
目的
2
探讨2型糖尿病浊毒内蕴证患者血浆代谢组学特征。
方法
2
纳入2023年11月—2024年2月就诊于天津中医药大学第一附属医院的2型糖尿病浊毒内蕴证患者103例,同
时招募健康受试者54名,收集2组人群一般情况,运用超高效液相色谱-静电场轨道阱高分辨质谱法检测血浆代谢物含量,构建正交偏最小二乘法判别分析模型,筛选组间变化明显的代谢产物,以代谢物第一主成分的变量重要性投影≥1、|log
2
FC|
>
1、
P
<
0.05为标准筛选差异代谢物。选用内部数据库和人类代谢组数据库对差异代谢物进行注释,MetaboAnalyst网站进行通路分析。
结果
2
2组性别、年龄差异无统计学意义。筛选出潜在差异代谢物17种,其中2型糖尿病浊毒内蕴证患者D-4′-磷酸泛酸、2,6-二氯吲哚酚、4-甲基苯酚、次黄嘌呤、11,12-环氧二十碳三烯酸、油酰胺、3-苯基乳酸高于健康人(
P
<
0.05);3-甲氧基苯甲酸、3-碘十八烷酸、甲苯咪唑、β-丙氨酸、柠檬酸、反式乌头酸、香叶基二磷酸酯、溶血磷脂酰胆碱(18∶2)、磷脂酰乙醇胺(18∶1)、己内酰胺低于健康人(
P
<
0.05)。共获得10条代谢通路,其中关键代谢通路为泛酸和辅酶A生物合成代谢通路。
结论
2
2型糖尿病浊毒内蕴证患者与健康人群存在代谢差异,其内在机制可能与D-4′-磷酸泛酸及β-丙氨酸所共同参与的泛酸和辅酶A生物合成代谢通路有关。
Objective
2
To explore the plasma metabonomic characteristics of patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome.
Methods
2
One hundred and three patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome were enrolled from November 2023 to February 2024 in the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and 54 healthy individuals were recruited. The general data of the two groups were analyzed
and the plasma metabolite content was detected using ultra-high performance liquid chromatography-Orbitrap mass spectrometry. Construct an orthogonal partial least squares discriminant analysis model to screen metabolites with significant intergroup changes. The variable importance in projection≥ 1
|log
2
FC|
>
1
and
P
<
0.05 were used as the criteria for the screening of differential metabolites. Annotate differential metabolites using internal databases and the human metabolome database
and perform pathway analysis using MetaboAnalyst website.
Results
2
There was no statistically significant difference in gender and age between the two groups.Seventeen potential differential metabolites were identified. The D-4′-phosphopantothena
te
2
6-dichloroindophenol
4-methylphenol
hypoxanthine
11
12-epoxyeicosatrienoic acids
oleamide
3-phenyllactic acid contents were higher in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(
P
<
0.05); 3-anisic acid
3-iodo-octadecanoic acid
mebendazole
β-alanine
citric acid
trans-aconitic acid
geranyl diphosphate
lysophosphatidylcholine(18∶2)
phosphatidylethanolamine(18∶1)
and caprolactam contents were lower in patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome than in healthy individuals(
P
<
0.05). Ten metabolic pathways were identified
including the key metabolic pantothenate and coenzyme A biosynthesis pathways.
Conclusion
2
Metabolic differences were observed between patients with type 2 diabetes mellitus and turbid toxin accumulation syndrome and healthy individuals
and the underlying mechanism may involve the pantothenate and coenzyme A biosynthesis pathways
jointly mediated by D-4′-phosphopantothenate and β-alanine.
2型糖尿病浊毒内蕴证代谢组学血浆生物标志物代谢通路
type 2 diabetes mellitusturbid toxin accumulation syndromemetabolomicsplasma biomarkersmetabolic pathway
葛均波,徐永健,王辰. 内科学[M]. 9版. 北京:人民卫生出版社,2018: 725.
吴深涛. 糖尿病病机的启变要素——浊毒[J]. 上海中医药大学学报,2004, 18(1): 24-26.
吴深涛,王斌,章清华,等. 论糖尿病从“脾不散精”到“浊毒内蕴”之病机观[J]. 中医杂志,2018, 59(22): 1920-1924.
王斌,邬金玲,罗昆,等. 化浊解毒法干预2型糖尿病合并高脂血症临床研究[J]. 山东中医杂志,2011, 30(5): 304-306.
何百川,章清华,薛超,等. 基于代谢组学对化浊解毒方治疗2型糖尿病大鼠的糖脂代谢研究[J]. 中华中医药杂志,2016, 31(5): 1897-1900.
庞湃,王斌,吴深涛,等. 2型糖尿病浊毒内蕴证中医诊断量表的研制及验证[J]. 中医杂志,2024, 65(2): 159-170.
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华糖尿病杂志,2021, 13(4): 315-409.
吴深涛. 论浊与湿异[J]. 中华中医药杂志,2011, 26(9): 1931-1933.
吴深涛. 论浊毒与糖尿病糖毒性和脂毒性的相关性[J]. 中医杂志,2004, 45(9): 647-649.
SOUSA AP, CUNHA DM, FRANCO C, et al. Which role plays 2-hydroxybutyric acid on insulin resistance?[J]. Metabolites, 2021, 11(12): 835.
MARTINEZ DL, TSUCHIYA Y, GOUT I. Coenzyme A biosynthetic machinery in mammalian cells[J]. Biochem Soc Trans, 2014, 42(4): 1112-1117.
DIBBLE CC, BARRITT SA, PERRY GE, et al. PI3K drives the de novo synthesis of coenzyme A from vitamin B5[J]. Nature, 2022, 608(7921): 192-198.
JACKOWSKI S, LEONARDI R. Deregulated coenzyme A, loss of metabolic flexibility and diabetes[J]. Biochem Soc Trans, 2014, 42(4): 1118-1122.
LEONARDI R, ROCK CO, JACKOWSKI S. Pank1 deletion in leptin-deficient mice reduces hyperglycaemia and hyperinsulinaemia and modifies global metabolism without affecting insulin resistance[J]. Diabetologia, 2014, 57(7): 1466-1475.
GARCIA M, LEONARDI R, ZHANG YM, et al. Germline deletion of pantothenate kinases 1 and 2 reveals the key roles for CoA in postnatal metabolism[J]. PLoS One, 2012, 7(7): e40871.
HOUMARD JA, TANNER CJ, YU C, et al. Effect of weight loss on insulin sensitivity and intramuscular long-chain fatty acyl-CoAs in morbidly obese subjects[J]. Diabetes, 2002, 51(10): 2959-2963.
THOMPSON AL, COONEY GJ. Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance[J]. Diabetes, 2000, 49(11): 1761-1765.
COONEY GJ, THOMPSON AL, FURLER SM, et al. Muscle long-chain acyl CoA esters and insulin resistance[J]. Ann N Y Acad Sci, 2002, 967: 196-207.
SANTOS L, GONÇALVES LS, BAGHERI-HANEI S, et al. Insulin stimulates β-alanine uptake in skeletal muscle cells in vitro[J]. Amino Acids, 2021, 53(11): 1763-1766.
STANFORD KI, MIDDELBEEK RJW, TOWNSEND KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity[J]. J Clin Invest, 2013, 123(1): 215-223.
HAMAOKA T, FU X, TOMONAGA S, et al. Stimulation of uncoupling protein 1 expression by β-alanine in brown adipocytes[J]. Arch Biochem Biophys, 2022, 727: 109341.
MATTHEWS JJ, DOLAN E, SWINTON PA, et al. Effect of carnosine or β-alanine supplementation on markers of glycemic control and insulin resistance in humans and animals: a systematic review and meta-analysis[J]. Adv Nutr, 2021, 12(6): 2216-2231.
VERKERKE ARP, WANG D, YOSHIDA N, et al. BCAA-nitrogen flux in brown fat controls metabolic health independent of thermogenesis[J]. Cell, 2024, 187(10): 2359-2374.e18.
MALISZEWSKA K, KRETOWSKI A. Brown adipose tissue and its role in insulin and glucose homeostasis[J]. Int J Mol Sci, 2021, 22(4): 1530.
WILLIAMS NC, O′NEILL LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation[J]. Front Immunol, 2018, 9: 141.
SUDHAHAR V, SHAW S, IMIG JD. Epoxyeicosatrienoic acid analogs and vascular function[J]. Curr Med Chem, 2010, 17(12): 1181-1190.
ROMASHKO M, SCHRAGENHEIM J, ABRAHAM NG, et al. Epoxyeicosatrienoic acid as therapy for diabetic and ischemic cardiomyopathy[J]. Trends Pharmacol Sci, 2016, 37(11): 945-962.
WITTERS LA, WATTS TD, DANIELS DL, et al. Insulin stimulates the dephosphorylation and activation of acetyl-CoA carboxylase[J]. Proc Natl Acad Sci U S A, 1988, 85(15): 5473-5477.
SAGGERSON D. Malonyl-CoA, a key signaling molecule in mammalian cells[J]. Annu Rev Nutr, 2008, 28: 253-272.
KOWLURU A, CHEN HQ, MODRICK LM, et al. Activation of acetyl-CoA carboxylase by a glutamate- and magnesium-sensitive protein phosphatase in the islet beta-cell[J]. Diabetes, 2001, 50(7): 1580-1587.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构